SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "hsv:(NATURVETENSKAP) hsv:(Fysik) hsv:(Den kondenserade materiens fysik) ;pers:(Yakimova Rositsa);pers:(Roccaforte F.)"

Search: hsv:(NATURVETENSKAP) hsv:(Fysik) hsv:(Den kondenserade materiens fysik) > Yakimova Rositsa > Roccaforte F.

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bouhafs, Chamseddine, et al. (author)
  • Multi-scale investigation of interface properties, stacking order and decoupling of few layer graphene on C-face 4H-SiC
  • 2017
  • In: Carbon. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0008-6223 .- 1873-3891. ; 116, s. 722-732
  • Journal article (peer-reviewed)abstract
    • In this work, we report a multi-scale investigation using several nano-, micro and macro-scale techniques of few layer graphene (FLG) sample consisting of large monolayer (ML) and bilayer (BL) areas grown on C-face 4H-SiC (000-1) by high-temperature sublimation. Single 1 x 1 diffraction patterns are observed by micro-low-energy electron diffraction for ML, BL and trilayer graphene with no indication of out-of-plane rotational disorder. A SiOx layer is identified between graphene and SiC by X-ray photoelectron emission spectroscopy and reflectance measurements. The chemical composition of the interface layer changes towards SiO2 and its thickness increases with aging in normal ambient conditions. The formation mechanism of the interface layer is discussed. It is shown by torsion resonance conductive atomic force microscopy that the interface layer causes the formation of non-ideal Schottky contact between ML graphene and SiC. This is attributed to the presence of a large density of interface states. Mid-infrared optical Hall effect measurements revealed Landau-level transitions in FLG that have a square-root dependence on magnetic field, which evidences a stack of decoupled graphene sheets. Contrary to previous works on decoupled C-face graphene, our BL and FLG are composed of ordered decoupled graphene layers without out-of-plane rotation. (C) 2017 Elsevier Ltd. All rights reserved.
  •  
2.
  • Giannazzo, F., et al. (author)
  • Graphene integration with nitride semiconductors for high power and high frequency electronics
  • 2017
  • In: Physica Status Solidi (a) applications and materials science. - : WILEY-V C H VERLAG GMBH. - 1862-6300 .- 1862-6319. ; 214:4
  • Journal article (peer-reviewed)abstract
    • Group III nitride semiconductors (III-N), including GaN, AlN, InN, and their alloys, are currently the materials of choice for many applications in optoelectronics (light-emitting diodes, laser diodes), and high-power and high-frequency transistors. Due to its attractive electrical, optical, mechanical, and thermal properties, graphene (Gr) integration with III-N technology has been considered in the last few years, in order to address some of the major issues which still limit the performances of GaN-based devices. To date, most of the studies have been focused on the use of Gr as transparent conductive electrode (TCE) to improve current spreading from top electrodes and light extraction in GaN-LEDs. This paper will review recent works evaluating the benefits of Gr integration with III-N for high power and high frequency electronics. From the materials side, recent progresses in the growth of high quality GaN layers on Gr templates and in the deposition of Gr on III-N substrates and templates will be presented. From the applications side, strategies to use Gr for thermal management in high-power AlGaN/GaN transistors will be discussed. Finally, recent proposals of implementing new ultra-high-frequency (THz) transistors, such as the Gr base hot electron transistor (GBHET), by Gr integration with III-N will be highlighted. (C) 2016 WILEY-VCH Verlag GmbH amp; Co. KGaA, Weinheim
  •  
3.
  • Roccaforte, F., et al. (author)
  • Towards vertical Schottky diodes on bulk cubic silicon carbide (3C-SiC)
  • 2022
  • In: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 606
  • Journal article (peer-reviewed)abstract
    • In this paper, we demonstrate the feasibility of fabricating vertical Schottky diodes on bulk cubic silicon carbide (3C-SiC) material obtained by combining sublimation epitaxy and chemical vapor deposition, starting from 4 degrees -off axis 4H-SiC. First, the good quality of the epilayers grown with this method was demonstrated by morphological and structural analyses. Then, fabricated vertical Pt/3C-SiC Schottky diodes exhibited an ideality factor of 1.21 and a barrier height of 0.6 eV, as determined by thermionic emission model. The temperature dependent forward current analysis indicated the formation of an inhomogeneous barrier, which has been related with the presence of conductive surface defects, detected by nanoscale local current measurements. On the other hand, the reverse leakage current could be described by thermionic field emission model, including image force lowering. These findings demonstrate the viability of the proposed approach for bulk 3C-SiC growth for device fabrication. The material quality and the feasibility of fabricating vertical diodes based on 3C-SiC with a low barrier pave the way for the application of this polytype for medium-voltage power devices.
  •  
4.
  • Yakimova, Rositsa, et al. (author)
  • Growth, defects and doping of 3C-SiC on hexagonal polytypes
  • 2017
  • In: ECS Transactions. - : Electrochemical Society. - 9781607685395 ; , s. 107-115, s. 107-115
  • Conference paper (peer-reviewed)abstract
    • Technologies for the growth of 3C-SiC with crystalline quality and crystal size similar to hexagonal counterparts (6H- or 4H-SiC) are still at the laboratory stage. There are several challenges in the control of polytype stability and formation of structural defects which have to be eliminated to reveal the full potential of this material. Nevertheless, 3C-SiC has been explored for various energy, environment and biomedical applications which significantly benefit from the intrinsic semiconductor properties of this material. The future of 3C-SiC and its applications depends on the advances which will be made in improving crystalline quality, enlarging crystal size and controlling doping levels which have not been entirely explored due to the lack of high quality 3C-SiC substrates. This paper reviews recent progress in growth and doping of thick 3C-SiC layers on hexagonal SiC substrates using sublimation epitaxy. It covers the growth process on off-axis substrates and defects occurrence, as well as the issue of obtaining high resistivity material.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view